2022-2023 Catalog & Student Handbook Archived Catalog
|
MATH 1630 - Finite Mathematics3 sem hrs cr
This course is a study of linear models, matrix algebra, linear programming, mathematics of finance, and combinatorics with applications in each of these areas. Other topics include factoring, rational expressions, radicals, and functions with their graphs. Prerequisite: Exemption from or completion of ENGL 0810 and READ 0810
In rare and unusual circumstances, a course prerequisite can be overridden with the permission of the Department Lead for the discipline. Corequisite: If a student is not eligible for collegiate level mathematics, he/she must enroll in MATH 0630 Learning Support for Finite Mathematics as a co-requisite with the MATH 1630 course
This course may include proctored exams which must be completed on campus or at an instructor approved proctoring center which may require additional costs to the student. Please consult your instructor for additional details.
Formerly/Same As (Formerly MAT 1310/MATH 1610)
Transfer (UT) or Non-Transfer Course (UN): UT
Master Course Syllabus Student Learning Outcomes
By the end of the course, students will be able to…
- increase algebra skills necessary to a variety of career choices.
- develop mathematical processes applicable to business, economics, and related fields.
- develop definitions and processes of the mathematics of matrices.
- develop linear programming techniques and their uses in applications.
- develop the concepts of the mathematics of finance.
Course Objectives
Throughout the course, students will have the opportunity to…
- write an equation to describe data relationships.
- determine cost, revenue, and profit functions.
- work with supply and demand equations.
- determine a break-even point.
- determine market equilibrium quantity and equilibrium price.
- set up systems of two linear equations with two unknowns for applications.
- use the Gauss-Jordan elimination method to solve systems of linear equations.
- apply the following properties and operations for matrices: size, equality, addition, subtraction, scalar multiplication, transpose.
- multiply matrices.
- determine the additive and multiplicative inverses of a matrix.
- use the multiplicative inverse of a matrix to solve a system of linear equations.
- determine, graphically, the solution to a system of linear inequalities with two unknowns
- find an optimum value for a given objective function with a set of constraints.
- use the simplex method to solve standard maximization problems.
- use the simplex method to solve standard minimization problems.
- determine future value, present value, and effective rate for compound interest problems.
- determine future value and present value for ordinary annuity problems.
- determine payments to a sinking fund.
- determine the periodic payment for amortization of a loan.
- apply the principles of union, intersection, and complement of sets.
- use Venn diagrams for union, intersection, complementation, and sorting.
- use the concepts of union and intersection in probability experiments, sample spaces, and events.
- find the probability of an event.
- apply properties of probability.
|